Laser ARPES measurements of Sr$_2$RuO$_4$ under uniaxial strain

Andrew Hunter1, Carsten Putzke2, Philip Moll2, Anna Tamai1 and Felix Baumberger1,3

1Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland
2Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
3Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland

Sr$_2$RuO$_4$ has evolved into a key-model system for correlated electron physics following the discovery of its superconductivity - long believed to harbour p-wave triplet pairing - 28 years ago. The normal state of Sr$_2$RuO$_4$ is exceptionally well characterized and is generally regarded as the cleanest Fermi-liquid system amongst all transition metal oxides. Recent transport experiments discovered that a compressive strain of $\sim 0.6 \%$ causes the superconducting transition temperature of Sr$_2$RuO$_4$ to increase from 1.5 K to 3.4 K concomitant with the development of a pronounced non-Fermi-liquid behaviour in the normal state. This behaviour is commonly attributed to a Lifshitz transition in one of the three Fermi surface sheets [1–3]. Here, we report a new generation of ARPES experiments under strain based on a thermally actuated strain cell and a micro-structured tapered sample prepared with focused ion beam milling. Coupled with a micro-focused laser source, this allows the measurement of the quasi-continuous variation of strain on a single sample. We use this new capability to image the Lifshitz transition and to monitor the evolution of the quasiparticle dispersion and self-energy upon approaching the non-Fermi-liquid regime.